C5 Activity Report for the IUPAP General Assembly – November 2011 (submitted by R B, Hallock, Chair C-5, September 2011)

(submitted by R.B. Hallock, Chair C-5, September 2011)

OFFICERS 2008-2011:

Chairman:	Robert Hallock, USA
Vice-Chairman:	Alain Ravex, France
Secretary:	Kimitoshi Kono, Japan

Members:

Alexander, Feher, Slovak Republic Karen Hallberg, Argentina Mustafa Kamal, Egypt Peter Kes, Netherlands Hu-Jong Lee, Korea Ting-Kuo Lee, Taiwan Paul Leiderer, Germany Jukka Pekola, Finland John Saunders, United Kingdom Alexander Smirnov, Russia Nan Lin Wang, China

Associate Members:

Sriram Ramaswamy, India (from C3) Pawel Hawrylak, Canada (from C8) Sadamichi Maekawa, Japan (from C9)

MAIN ACHIEVEMENTS

Commission Meeting

C5 held its major triennial formal meeting in advance of the General Assembly in August 2011 in Beijing on the occasion of the meeting of LT26, our major Type A conference held every three years. The previous meeting was in August of 2008 in Amsterdam at the time of LT25. We have conducted business effectively by e-mail in the interim.

Agenda and Comments (August 2011 C-5 meeting)

(1) Overview of the meeting agenda. The meeting was planned for 90 minutes, then a 30 minute interval, then the C-5 dinner, which was provided for us by Nan-Lin Wang.

(2) Brief review of conference types, guidelines for C-5 support (sanction and recommendations for funding) for conferences of various types, A, B, C. Fact: Satellites of type A conferences are typically not eligible for Type B status. Question: When do we want to consider exceptions? Fact: There are guidelines for size and geographic spread for con-

ferences. Question: When do we want to consider exceptions; e.g. to make a technically Type C a recommended Type B? Outcome: exceptions to the guidelines should be rare and made only for good reasons. The ULT meeting held in Korea following LT26 was such an exception, and represented the first such meeting in Korea thus strongly promoting the discipline and its visibility in Korea.

(3) Brief discussion of the need for visible international committees to provide guidance on the balance of international representation and fairness for presentations at sanctioned meetings.

(4) Brief affirmation on the inclusion of women and underrepresented others on program committees and for invited talks; primarily as an informational reminder.

(5) Report from Kimitoshi Kono of the outcome of the Council and Chairs meeting (New Delhi, fall 2010).

(6) Final report from the organizers of LT25. High points from the report were presented orally by Reyer Jochemsen in the absence of Peter Kes. A report copy was distributed to C5 members and to IUPAP Headquarters; it is an excellent and complete report.

(7) Brief report from LT26 on the status of the conference (number attending, representation, etc.). Li Lu (LT26 co-Chair); approximately 1200 paid registrations, with allowance for several hundred students from China to attend sessions.

(8) Consideration of the proposal from QFS2012 for Type B sanction and financial support. This was recommended by the QFS Steering Committee and was given unanimous endorsement by C5 for Type B sanction and financial support for 2012.

(9) Consideration of the proposal from Argentina to serve as host for LT27; this strong proposal was the only one submitted. The formal proposal was accepted and Argentina is recommended as the host country for LT27 to be held in 2014. A formal request to IUPAP for Type A financial support will be forthcoming in due course.

(10) Consideration of and recommendation of candidates for the membership for C-5 for 2011-2014. Our discussion took into consideration where major contributions to low temperature physics were being made, geographic balance, emerging areas of development, history on the Commission, gender balance., etc. The discussion also took into account the guidelines for duration of membership, including details comments from Head-quarters that three terms for members is acceptable and will be supported, but three is the firm limit, with no officer position to be taken following the position of Chair. Our recommendation for C5 membership for 2011-2014 have been submitted in a separate document.

(11) Other business – This included a brief discussion of suggestions for the organizers of LT27, which will be forwarded to them.

Proposals to host LT27 in 2014

We posted and published a call for proposals to host the major Type A conference LT27 in 2014. By rotation the call for proposals was limited to the Americas. Since the LT conference had been hosted in the United States a number of times, the commission Chair (and former Chair) actively solicited proposals from Canada and South America. This, as noted in the meeting agenda was successful and in April 2011 a strong proposal was submitted by Argentina. This was formally considered and approved by C-5 during our C-5 meeting in Beijing. A request for the appropriate type A conference support will be forthcoming from the LT27 organizers.

COMMISSION SPONSORED CONFERENCES (2009)

Type B

Quantum fluids and Solids 2009

August 5-11, 2009, Evanston, Illinois, USA, Chairman: William Halperin (co-Chairman Harry Kojima), 250 participants. (http://www.qfs2009.northwestern.edu/)

Type B

5th International School and Conference on Spintronics and Quantum Information Technology

July 7 – July 11, Crakow, Poland, Chairman: Tomas Dietl (Co-Chairman Daniel Loss) (http://info.ifpan.edu.pl/spintech5/)

Type A (early approval) 26th International Conference on Low Temperature Physics (LT26) Tentative dates: August 10 – August 17, 2011, Beijing, China, Chairman: Li Lu

COMMISSION SPONSORED CONFERENCES (2010)

Type B

Quantum fluids and Solids 2010

August 1 - 6, 2010, Grenoble, France, Chairman: Henri Godfrin (co-Chairman Yuriy Bunkov), 287 registered participants. (<u>http://qfs2010.neel.cnrs.fr/</u>)

Type C

Cryocrystals and Quantum Crystals 2010

July 26 – 31, 2010, Chernogolovka, Russia, Chairman; A.F. Andreev (co-chairs A. Levchenko and L.P. Mezhov-Deglin) Type A (early approval) 26th International Conference on Low Temperature Physics (LT26) Tentative dates: August 10 – August 17, 2011, Beijing, China, Chairman: Li Lu

COMMISSION SPONSORED CONFERENCES (2011)

Type A

26th International Conference on Low Temperature Physics (LT26)

Dates: August 10 – August 17, 2011, Beijing, China; about 1200 registrants plus many students from china allowed to attend sessions; Chairman: Li Lu

Type B

Ultra-Low Temperature conference (ULT 2011), August 19 – August 21, 2011, Daejeon, Republic of Korea; about 180 participants; Chairman: Hu-Jong Lee, Co-Chairman: Eunseong Kim

Type C

7th International Conference on Stripes and High TC Superconductivity (ICS 2011); Rome Italy.

<u>COMMISSION SPONSORED CONFERENCES</u> (anticipated for 2012 and beyond)

Type B (C-5 recommends IUPAP type B financial support) **Quantum fluids and Solids 2012**, summer 2012, Lancaster, England, Chairman: George Pickett.

Type B (C-5 is expected to recommend IUPAP type B financial support) **Quantum fluids and Solids 2013**, summer 2013, Japan

Type A (C-5 recommends IUPAP type A financial support) 27th International Conference on Low Temperature Physics (LT27), Argentina, Chairperson: Susana Hernandez.

IUPAP YOUNG SCIENTIST PRIZE IN LOW TEMPERATURE PHYSICS

Following a successful solicitation and subsequent consideration of nominations, the second IUPAP Young Scientist Prize award ceremony in low temperature physics was held at the LT26 conference in August 2011. The recipients selected by the C-5 commission in early 2011 (and presented with their award medal, certificate and cash award) are:

Eunseong Kim [KIAST, Korea]: For his important contributions to the discovery and further elucidation of unusual phenomena in solid 4He, which has stimulated a new era of investigation of quantum solids.

Max Hofheinz [CEA Saclay, France]: For his leading role in the generation of Fock states in superconducting quantum circuits and the realization of arbitrary quantum states in superconducting resonators.

Mika Sillanpää [Aalto University, Finalnd]: For his original contributions in coherent quantum information transfer and Landau-Zener interferometry in superconducting qubits.

STATUS OF LOW TEMPERATURE PHYSICS – BASED ON LT26

Summary of Physics and Issues from the LT26 International Conference, Beijing, China, August 2011 to be published with the conference proceedings.

The field of Low Temperature Physics, represented by C-5, has had a remarkable period of discovery in recent years. We have also encountered some issues that have given us difficulty. Here we begin with comments on two areas of difficulty that have been encountered and then move on to discuss some of the remarkable progress that was in evidence at the highly-successful LT26 meeting, which was hosted in Beijing in a very convenient and pleasant location at the Olympic Park.

Members of the C-5 community have had considerable difficulty in obtaining 3He recently. This is due to the dramatic increase in the demand of 3He to construct gas proportional counters for neutron detection for radiation portal monitors deployed for homeland security and the non-proliferation use such detectors. Some areas of experimental low temperature physics, for example, those areas that need dilution refrigerators, have suffered a dramatic increase in the price of 3He, or even no access to 3He at all. There is some progress at resolving this in some countries, but the cost is still very high and access to 3He is still a serious issue for the community. A reasonable discussion of this issue can be found in the November 2010 issue of *CryoGas International* and a much more lengthy discussion can be found in the report of the National Research Council (of the United States), with the title *Selling the Nation's Helium Reserve*, which is available from www.nap.edu, the site of US National Academies Press.

A second area of growing concern is access to adequate research support to allow serious progress to be made in the areas of fundamental discovery and technical development. In particular, access to research support is generally difficult and is nonuniform across the areas of the world where there has been strong traditional support for the field. Similarly, while there have been some remarkable examples of progress that points to technological impact, there is a concern that access to the levels of support needed to allow good progress is growing harder rather than easier. But, that said, progress is our field has been remarkable and we offer a few highlights that show evidence of this progress.

The dramatic emergence of topological insulators in the previous LT conference held in Amsterdam in 2008 is still a rapidly emerging area. The concept has turned out to be very general. A bulk energy gap which is associated with specific topological properties has to close at the interface to another gap state with different topological properties. Accordingly, the excitation at the interface becomes gapless or metallic. The dispersion relation becomes linear, and the excitation is described as a ``Dirac fermion", which has become popular after the discovery of graphene. In the family of topological insulators, insulators (but often semi-metals) or semiconductors with strong spin-orbit interactions, p-wave superfluids or superconductors, twodimensional electrons under strong magnetic fields, etc. are involved. The concept is quite interdisciplinary. It is not restricted to one of the traditional LT program areas. In such fields, the importance of LT, with a wide scope, to unify whole areas of low temperature physics is evident. There has been a remarkable expansion of research in this field, including, for example, topology and Berry phase. This trend is expected to continue for a number of years.

The predicted Majorana particle is a strange particle, for which the antiparticle is identical with the particle itself. Some of the excitations at the interfaces of topological insulators possess a similar property to the predicted properties of the Majorana particle. Surface bound states of superfluid \$^3\$He-B, which have been known as Andreev bound states, are theoretically predicted to have a Majorana character. Such Majorana states are predicted in many other places including the superconductor vortex core, semiconductor-superconductor SNS junctions, and so on. There is a sudden surge in the hunt for clearly identified Majorana states in low temperature physics.

In 2004 it was announced that in torsional oscillator experiments with solid helium, part of the helium appeared to detach from the sample cell and be left behind when the cell moved. This was interpreted as the likely discovery of a supersolid state. Measurements of the shear modulus suggested that the behavior seen in the torsional oscillators might instead be related to the stiffness of the solid. The field is very active, and filled with polite controversy. Recent work has shown that the behavior of the shear modulus and the torsional oscillators is distinctly different when the sample cell undergoes macroscopic rotation, thus suggesting that the supersolid state may exist. In addition experiments which seek to cause flow through solid helium via the fountain effect have been successful, but the failure of macroscopic squeezing experiments to cause flow raises questions. In addition, it has been shown that shear effects can have a significant effect on some torsional oscillator results. There are several theoretical ideas that seek to explain the various behaviors seen, but none has been firmly confirmed by experiment. The field is extremely active, and there is as yet no clear consensus on what is the true picture of solid 4He.

Vortices and quantum turbulence, superfluid 3He in aerogel, low dimensional confined He system, and surfaces and interfaces continue to attract interest. New visualization techniques of turbulent flow of superfluid He have been pursued and been successful. Small particles of solid hydrogen, electron bubbles, and excimer He molecules are used for such purposes. In particular, the excimer approach seems to hold great potential in this are because the presence of excited states of helium (rather that a larger impurity) does not introduce a disturbance. New phases of superfluid 3He in aerogel and proximity effects are under active study. Adsorbate He systems provide rich ground for fundamental research on strong correlation, phase transitions, friction, and so on, especially due to the high controllability of parameters and extremely clean experimental conditions.

The year of 2011 is a centennial anniversary of the discovery of superconductivity by H. Kammerlingh Onnes. The debut of iron based superconductors took place in the vicinity of LT26 (three years ago). A remarkable amount of work and synthesis of new materials in this family has emerged since then. Consequently, the understanding of multiband superconductivity is strongly enhanced. Traditional high Tc superconducting oxide and superconductivity of heavy electron systems continue to stimulate active research. Quantum criticality seems to be a key to provide a unified understanding of these superconductors in the strongly correlated electron system. Quantum criticality is discussed not only in the context of superconductivity in strongly correlated systems but also in other systems, in particular, strongly frustrated spin systems. As a new direction, superconductivity can now be realized by electric field-induced carrier doping.

The Kondo effect has an as long history in superconductivity and it is still attracting interest. Starting from the resistivity of metals with dilute magnetic impurities, it prevails in heavy electron systems, and eventually in the quantum transport of quantum dots. Here, a nonequilibrium aspect of the problem has been introduced. It is an important area of low temperature physics with constant progress.

Dramatic developments in the area of circuit QED experiments have been remarkable. The technique has been applied to different systems, for example, superconducting Josephson junctions, nano-mechanical oscillators, and so forth. Amazing quantum properties which have been recognized in the cavity QED of atomic or molecular systems have been demonstrated in macroscopic quantum systems as well. These experimental developments make us foresee real quantum information processing in the near future. It is worth noting that evidence for the presence of a quantum limit has been realized in nano-mechanical oscillators. Quantum information process driven research has been extensively developed in the spin qubit context in semiconductor quantum dots, where spin-orbit interactions and hyperfine interactions are important.

The study of cold atomic gases continues to develop and quantitative measurements of thermodynamic functions have been realized. The research front is approaching the stage where it is possible to design practical quantum simulators. In addition, a

possible improvement in atomic clock precision is likely to have impact on many other fields of science.

The above-mentioned recent developments in low temperature physics provide a very optimistic prospect for a unified understanding of strongly correlated systems. To achieve this, it is obvious that more systematic, quantitative, and high precision low temperature experiments are inevitable. In this context, the recent cryogenic technical development of low temperature scanning probe microscopy and spectroscopy, and the maturing technology of dry cryostat design are important to note.

This year is the 25th anniversary of the discovery of high Tc oxide superconductors. In addition to the fundamental interest in the mechanism of superconductivity, the prospect for the industrial application of such materials is bright. For example, electrical power cables, magnetically levitated high speed trains, electricity generator, etc., may well lead to what might be termed a new type of industrial revolution.

LT 26 conference summary respectfully submitted by Kimitoshi Kono, Secretary, C5 Robert Hallock, Chair, C5